

Cross section of a conducting sphere

All charges go to the surface of the sphere and uniformly distribute themselves

Cross section of a conducting sphere

Electric Field inside is zero

Because there are no charge inside (Gauss's Law)

Cross section of a conducting spherical shell:: Faraday cage

E_{inside} = 0 : no charge can reside here

Conductive Sphere

Surface of the conductive sphere

$$\phi = EA$$
 $\phi = \sigma A/\epsilon_0$ $E = \sigma/\epsilon_0$

Question #1

Can you use Gauss's Law to solve the **electric field** by charged disk? [For calculating electric field at any arbitrary point]

- A. Yes
- B. No

Question #2

Can you use Gauss's Law to solve the **electric field** by a dipole? [For calculating electric field at any arbitrary point]

- A. Yes
- B. No